Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 174.834
1.
Nat Commun ; 15(1): 3104, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600066

During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.


Single-Cell Gene Expression Analysis , Zebrafish , Animals , Embryonic Development/genetics , Transcription, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Developmental
2.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38564636

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Nuclear Proteins , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Gene Expression Regulation , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Phosphorylation , Hypoxia , Transcription, Genetic , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
3.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641822

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , RNA Polymerase II/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Splicing , Chromatin , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
4.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578824

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Anti-Bacterial Agents , DNA Gyrase , Escherichia coli , Topoisomerase II Inhibitors , Topoisomerase II Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Gyrase/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription, Genetic/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
5.
Cell Rep ; 43(4): 114073, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578825

Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.


Aging , Macrophages , Phagocytosis , Proto-Oncogene Proteins c-myc , Upstream Stimulatory Factors , Humans , Macrophages/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Upstream Stimulatory Factors/metabolism , Upstream Stimulatory Factors/genetics , Middle Aged , Adolescent , Phagocytosis/genetics , Young Adult , Transcription, Genetic , Aged , Chemotaxis/genetics
6.
Anal Bioanal Chem ; 416(12): 2941-2949, 2024 May.
Article En | MEDLINE | ID: mdl-38594392

Messenger RNA (mRNA) vaccines represent a landmark in vaccinology, especially with their success in COVID-19 vaccines, which have shown great promise for future vaccine development and disease prevention. As a platform technology, synthetic mRNA can be produced with high fidelity using in vitro transcription (IVT). Magnesium plays a vital role in the IVT process, facilitating the phosphodiester bond formation between adjacent nucleotides and ensuring accurate transcription to produce high-quality mRNA. The development of the IVT process has prompted key inquiries about in-process characterization of magnesium ion (Mg++) consumption, relating to the RNA polymerase (RNAP) activation, fed-batch mode production yield, and mRNA quality. Hence, it becomes crucial to monitor the free Mg++ concentration throughout the IVT process. However, no free Mg++ analysis method has been reported for complex IVT reactions. Here we report a robust capillary zone electrophoresis (CZE) method with indirect UV detection. The assay allows accurate quantitation of free Mg++ for the complex IVT reaction where it is essential to preserve IVT samples in their native-like state during analysis to avoid dissociation of bound Mg complexes. By applying this CZE method, the relationships between free Mg++ concentration, the mRNA yield, and dsRNA impurity level were investigated. Such mechanistic understanding facilitates informed decisions regarding the quantity and timing of feeding starting materials to increase the yield. Furthermore, this approach can serve as a platform method for analyzing the free Mg++ in complex sample matrices where preserving the native-like state of Mg++ binding is key for accurate quantitation.


Electrophoresis, Capillary , Magnesium , RNA, Messenger , Transcription, Genetic , Electrophoresis, Capillary/methods , Magnesium/analysis , RNA, Messenger/genetics , RNA, Messenger/analysis , SARS-CoV-2/genetics , Humans
7.
Cell Rep ; 43(4): 114118, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38619966

Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.


Zygote , Animals , Mice , Zygote/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Gene Expression Regulation, Developmental , Cellular Reprogramming/genetics , RNA/metabolism , RNA/genetics , Embryonic Development/genetics , Female , Embryo, Mammalian/metabolism , Genome , Mouse Embryonic Stem Cells/metabolism , Transcription, Genetic
8.
J Chromatogr A ; 1722: 464885, 2024 May 10.
Article En | MEDLINE | ID: mdl-38631223

Heightened interest in messenger RNA (mRNA) therapeutics has accelerated the need for analytical methodologies that facilitate the production of supplies for clinical trials. Forced degradation studies are routinely conducted to provide an understanding of potential weak spots in the molecule that are exploited by stresses encountered during bulk purification, production, shipment, and storage. Consequently, temperature fluctuations and excursions are often experienced during these unit operations and may accelerate mRNA degradation. Here, we present a concise panel of chromatography-based stability-indicating assays for evaluating thermally stressed in vitro transcribed (IVT) mRNA as part of a forced degradation study. We found that addition of EDTA to the mRNAs prior to heat exposure reduced the extent of degradation, suggesting that transcripts may be fragmenting via a divalent metal-ion mediated pathway. Trace divalent metal contamination that can accelerate RNA instability is likely carried over from upstream steps. We demonstrate the application of these methods to evaluate the critical quality attributes (CQAs) of mRNAs as well as to detect intrinsic process- and product-related impurities.


RNA Stability , RNA, Messenger , Edetic Acid/chemistry , Transcription, Genetic , Hot Temperature
9.
Nat Commun ; 15(1): 3452, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658543

Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.


Enhancer of Zeste Homolog 2 Protein , Histones , Lymphoma, Follicular , Mutation , Polycomb Repressive Complex 2 , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Histones/metabolism , Histones/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Methylation , Chromatin/metabolism , Chromatin/genetics , Transcription, Genetic
10.
J Exp Med ; 221(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38661718

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Cell Communication , Chemokine CCL3 , Killer Cells, Natural , Muromegalovirus , Protein Biosynthesis , Transcription, Genetic , Animals , Mice , Muromegalovirus/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Genes, Reporter , Mice, Inbred C57BL , Herpesviridae Infections/immunology , Herpesviridae Infections/genetics , Mice, Transgenic , Interferon Type I/metabolism , Signal Transduction
11.
Cells ; 13(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38667307

Pigs are the most important source of meat and valuable biomedical models. However, the porcine immune system, especially the heterogeneity of CD8 T cell subtypes, has not been fully characterized. Here, using single-cell RNA sequencing, we identified 14 major cell types from peripheral blood circulating cells of pigs and observed remarkable heterogeneity among CD8 T cell types. Upon re-clustering of CD8+ T cells, we defined four CD8 T cell subtypes and revealed their potential differentiation trajectories and transcriptomic differences among them. Additionally, we identified transcription factors with potential regulatory roles in maintaining CD8 T cell differentiation. The cell-cell communication analysis inferred an extensive interaction between CD8 T cells and other immune cells. Finally, cross-species analysis further identified species-specific and conserved cell types across different species. Overall, our study provides the first insight into the extensive functional heterogeneity and state transitions among porcine CD8 T cell subtypes in pig peripheral blood, complements the knowledge of porcine immunity, and enhances its potential as a biomedical model.


CD8-Positive T-Lymphocytes , Sequence Analysis, RNA , Single-Cell Analysis , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Swine , Sequence Analysis, RNA/methods , Transcriptome/genetics , Cell Differentiation/genetics , Transcription, Genetic
13.
Elife ; 122024 Apr 05.
Article En | MEDLINE | ID: mdl-38577979

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


RNA Precursors , Transcription, Genetic , Animals , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA , Introns/genetics , Mammals/genetics
14.
Oncol Res ; 32(4): 625-641, 2024.
Article En | MEDLINE | ID: mdl-38560562

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Interleukin-17/genetics , Interleukin-17/metabolism , Phosphorylation , Lung Neoplasms/pathology , Acetylation , Mice, Nude , Transcription, Genetic , Cell Movement/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
15.
Proc Natl Acad Sci U S A ; 121(18): e2312111121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38657041

Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.


Cell Differentiation , Colitis , Histone Deacetylases , Nuclear Receptor Co-Repressor 1 , Th17 Cells , Animals , Th17 Cells/cytology , Th17 Cells/metabolism , Th17 Cells/immunology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Mice , Colitis/genetics , Colitis/metabolism , Colitis/immunology , Transcription, Genetic , Transcription Factors/metabolism , Transcription Factors/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Interleukin-17/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , Humans , Repressor Proteins/metabolism , Repressor Proteins/genetics , Interleukin-2/metabolism
16.
Sci Adv ; 10(17): eadn1837, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657072

Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.


Drosophila Proteins , Polycomb-Group Proteins , Protein Binding , Response Elements , Transcription, Genetic , Animals , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , CpG Islands , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Chromatin/metabolism , Chromatin/genetics , Promoter Regions, Genetic
17.
Virol J ; 21(1): 93, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658979

African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.


African Swine Fever Virus , African Swine Fever , Polymorphism, Single Nucleotide , Transcription Factor RelA , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Swine , Transcription Factor RelA/genetics , African Swine Fever/virology , African Swine Fever/genetics , African Swine Fever/immunology , Disease Resistance/genetics , Up-Regulation , Transcription, Genetic , Sequence Analysis, DNA , Sus scrofa/genetics , Sus scrofa/virology
18.
Nat Commun ; 15(1): 3186, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622114

Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.


Rho Factor , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Rho Factor/chemistry , Transcription, Genetic , RNA/genetics , Binding Sites , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics
19.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622116

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Rho Factor , Transcription Factors , Transcription Factors/metabolism , Virulence/genetics , Rho Factor/genetics , Rho Factor/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic , Bacteria/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
20.
Nat Commun ; 15(1): 3193, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609371

RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.


DNA-Directed RNA Polymerases , Transcription, Genetic , DNA-Directed RNA Polymerases/genetics , Binding Sites , Escherichia coli/genetics , Lac Repressors
...